Embryonic motor axon development in the severe SMA mouse.

نویسندگان

  • Vicki L McGovern
  • Tatiana O Gavrilina
  • Christine E Beattie
  • Arthur H M Burghes
چکیده

Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein. Previously, cultured SMA motor neurons showed reduced growth cone size and axonal length. Furthermore, reduction of SMN in zebrafish resulted in truncation followed by branching of motor neuron axons. In this study, motor neurons labeled with green fluorescent protein (GFP) were examined in SMA mice from embryonic day 10.5 to postnatal day 2. SMA motor axons showed no defect in axonal formation or outgrowth at any stage of development. However, a significant increase in synapses lacking motor axon input was detected in embryonic SMA mice. Therefore, one of the earliest detectable morphological defects in the SMA mice is the loss of synapse occupation by motor axons. This indicates that in severe SMA mice there are no defects in motor axon formation however, we find evidence of denervation in embryogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome Profiling of Spinal Muscular Atrophy Motor Neurons Derived from Mouse Embryonic Stem Cells

Proximal spinal muscular atrophy (SMA) is an early onset, autosomal recessive motor neuron disease caused by loss of or mutation in SMN1 (survival motor neuron 1). Despite understanding the genetic basis underlying this disease, it is still not known why motor neurons (MNs) are selectively affected by the loss of the ubiquitously expressed SMN protein. Using a mouse embryonic stem cell (mESC) m...

متن کامل

Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy.

The childhood motor neuron disease spinal muscular atrophy (SMA) results from reduced expression of the survival motor neuron (SMN) gene. Previous studies using in vitro model systems and lower organisms have suggested that low levels of Smn protein disrupt prenatal developmental processes in lower motor neurons, influencing neuronal outgrowth, axon branching and neuromuscular connectivity. The...

متن کامل

GLOBAL GENE PROFILING UTILIZING A CELL MODEL OF SPINAL MUSCULAR ATROPHY by

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder caused by mutations in the survival motor neuron gene (SMN). Despite understanding the genetic basis behind the diseases, questions still remain about the specificity of the disease; why are motor neurons selectively affected? Using a mouse embryonic stem (mES) cell model for severe SMA, our present study had two...

متن کامل

Temporal requirement for SMN in motoneuron development.

Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a ...

متن کامل

Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models.

Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 17 18  شماره 

صفحات  -

تاریخ انتشار 2008